Statistical Methods and Quality Control’

PROCTER THOMSON, Procter and Gamble Company, Cincinnati, Ohio

TATISTICS, as the pronunciation of its name
does not indicate, started as the collection of in-
formation about the state, births, deaths, ete. It
should properly be called ‘‘State’’istics. Besides the
name there is another hangover from the original
object of inquiry. The term population is used oceca-
sionally to describe the complete colleetion of men,
women, cottonseed, or brick which is to be sampled
and judged. These remarks are directed to leading
up to and amplifying the A.S.T.M. Manual on the
Quality Control of Materials.
Figure 1 shows boards cut by various types of saws,
100 blocks as shown for each type of saw. A, the
gang saw, has most of its production in two groups,

but if one had a thousand blocks from A instead of
100, the tendency to fan out would be observed. The
bull’s eye for each saw was 1 in. The saws were ad-
justed so that on the average they produced 1-in.
boards. It is probably fair to say that each saw op-
eration had its process well under control.

Tronsverse Strength, psi.

Fia. 2

A similar set of observations is shown in Figure 2.
This is from the A.S.T.M. Manual and shows trans-
verse breaking strength of bricks. The reasons for
this shape are evident if we examine in detail the
things that take place in a test or series of tests. For

simplicity, let us consider the case where a number

of analyses are made on replicate samples. If a liquid
is chosen for analysis and the sample is well shaken,

1The figures are all from the A.8.T.M. Manual on the Quality Control

of Materials except No. 1 from the U. S. Department of Agriculture;

No. 3, 7, and 8 compiled by the author; and No. 9 from the book

gﬁcm;lomtlc Control of Quality of Manufacture Product” by W. A.
ewhart.
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the assumption that the samples are all alike is fairly
true. A good example of this type is the analysis of
glycerin by the bichromate oxidation method.

Tn this test we have a fairly large number of points
at which measurement is made. The final result has
an ‘‘error’’ which is the algebraic sum of all the
errors made. The various points at which variations
or ‘‘errors’’ in measurement can be made are: the
standardizing of the bichromate solution; the weigh-
ing of the sample of glycerin; the transference of the
glycerin to the flask; the making up to volume; the
uniformity of the solution of glycerin attained by
shaking ; the variations in pipetting; the variations in
the completeness of the oxidation; the error in back
titrating as to a) burette reading and b) as to end
point.

Suppose in a determination like this, we have eight
points at which variation can oceur; suppose (for the
sake of simplifying the discussion) the variations are
all of the same size and equal 0.1% glycerin. If we
made the determination 256 times, we would have the
deviations piling up like Figure 3.2
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True Mean or Zero Variation
Fig. 3

In an actual system the variations are not of equal
size, nor do they change abruptly from the 0.1 to
the —0.1 value. The shape of the distribution there-
fore smooths out and becomes somewhat like the line
in the previous figure.

The stepped polygon, representing the ‘‘heads and
tails’’ distribution, is the binomial expansion (a-+-b)?
where the height of the steps is given by the ecoeffi-
cients of the terms of the expansion. As the expo-
nent of the expansion becomes larger and larger, the
steps become smaller and smaller. To fit the general
case for all expansions, De Moivre developed in 1733
the ‘‘probability’’ curve y — ke™**. Before assigning
more useful values to the constants ‘‘k’’ and “‘h,”’ we
want to consider various methods of expressing the
‘‘ecentral’’ value in a distribution and of expressing
the dispersion or amount of scatter.

Refer to the breaking strength of brick. Ordinarily
there is no point in having the scale spread out so
that each test will be charted to the full scale of its
original value. The strength of bricks was determined
to 10 1bs. To show each at its original value required

*These values are based on probability mathematics as applied to
“heads and tails” for 8 coins. The +0.1 or the —0.1 value for each
cause of variation is considered to occur just like heads or tails.
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2010—270 C .
—~———— or 174 divisions. The work can be simplified
and the scales compressed by plotting ‘‘ grouped’’ fre-
quencies. Figure 4 shows that data on the bricks plot-
ted “‘grouped.’’ The number of ‘‘cells’’ in a grouped
distribution should preferably be between 11 and 20.
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If the number of observations is small, 25 to 250, as
few as 10 cells may be used. Below 25 observations
there is not much point in grouping.
Figure 5 shows graphical presentations of the same
data.
Cumulative Frequency

For some purposes, particularly age test or ‘‘life’’
test, a cumulative grouping is desirable. The values
may be plotted on a ‘‘less than’’ or greater than basis.
The values for the bricks are collected in this fash-
ion on a ‘‘less than’’ basis in the upper part of Fig-
ure 6. In the lower part of Figure 6 they are plotted
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percentagewise on probability paper. This paper is
designed to give a straight line to a normal cumula-
tive or ‘‘ogive’’ curve.

Using the Normal Distribution Functions

Two attributes of a group of data, collected and
plotted in the fashion shown, are immediately appar-
ent. Some measure of central value is useful, and
some way of expressing the scatteration about this
central value would be of value, Three values of cen-
tral values are used; the choice is made according to
the purpose for which it is used.

The mean or average value is, of course, the most
common and most useful. The median or middlemost
value has definite utility as a preliminary value. If
the observations are tallied up, the median can be de-
termined by counting. The mode or peak value has
special utility in a ‘‘skewed’’ distribution.. Skewed
distribution will be discussed later.



542 THE JOURNAL oF THE AMERICAN O1r. Cuemists’ Soctery, NOVEMBER, 1953

The scatteration can be expressed in several ways.
It is nearly always expressed as some funetion of the
distances of the points from the mean value.

The most obvious measure is the average deviation.
The differences between the mean value and the in-
dividual values are summed up without regard to -+
or — signs and divided by the number of values. This
value is not normally used; first, because it is not the
most efficient measure of scatter, and, second, because
it is tedious to calculate.

The (so-called) standard deviation is the commonly
used measure of scatteration. It is more properly
called the root-mean-square deviation. The standard
deviation or o is obtained by determining the differ-
ences between each value (X) and the mean (M).
Each difference is squared. The squares are summed,
the sum is divided by n (the number of observations),
and the square root of the quotient is taken.

In algebraic form: o= \/iQ(%M)E

In practice this is simplified as follows:

3(X—M)2  3X*-—2M3IX+4M?
n - n
but 2X==nM and SM*==nM? so 3IX?—2M3X |+ 3M2-}-
3X2-2nM?4nM? so = E(X \I)_ 252 11]1\]12 or g =

\/;Q(—nM? zX

T Vn~ _R
This may be written \/ 3X* (EX)

o may then be computed by summing up the squares
of the numbers and the first powers of the numbers.
A simple manipulation gives ¢. The amount of work
can be further simplified by grouping and coding.

Skewed Distributions

One of the most common type of skewed distribu-
tions is encountered where the values approach 0 (or
100%). Even by analytical error it is hard to get
a value below 0 (or over 100%).
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Figure 7 shows the percentage of unsaponifiable in
tallow received at a factory. More than 10 million
pounds are represented. The values spread from 0 to
1.2 with the peak at about 0.42. The mean and the

standard deviation do not completely define the char-
acteristics of sueh a colleetion of data. A third param-
eter skewness is required. A mathematical measare
of this can be derived from the summation of the
cubes of the deviations from the mean in a manner
somewhat similar to the manner in which the stand-
ard deviation is derived from the squares of the de-
viations from the mean. These three parameters are
difficult to handle. It is much simpler to plot the val-
ues cumulatively on probability-log paper, as in Fig-
ure 8. This enables one to draw conclusions from the
data quickly and easily.

Grouped Frequency Method for M and o

Referring back to Figure 4, column f is freguency.
The values for strength and frequency are copied
below in a reverse order to conform to the conven-
tion that as one goes up from the origin the values
increase.

{ d fd £42
1875 - 2025 1 +6 + 6 36
1725 - 1875 0 435 0 0
1575 - 1723 2 +4 + 8 32
1425 - 1573 2 +3 + 6 18
1275 - 1425 17 +2 +34 68
1125 - 1275 39 +1 +-39 39
975 - 1125 1050
825- 975 80 —1 —80 80
675 - 825 38 —2 —7 152
525 - 675 6 —3 —18 5
375- 525 1 —4 — 4 16
295 - 375 1 -5 -3 25
n =270 =493 520
=td —90
= g = 883 = —183
sfd 520 = —90
=g = 1.926
M = 1050 — 150(.333) = 1000
o 1.926
8 =1V 1.926 — (—.333)* == 150 \/ a1
1.815

(¢) 8=150 X 1.347 = 2021

Column d is the distance, in cell units, from an
assumed origin. The assumed origin may be placed
wherever convenient. The writer prefers to place it
where it will minimize the size of the numbers to be
handled. In the tabulation it is midpoint of the 975
to 1,125 cell or 1,050. It will be observed that this
is a method of ‘‘coding’’ the values. In effect, 1,050
has been subtracted from each value and the result
divided by 150, Column fd is thus 3X. The values
in fd are multiplied by d giving fd% This is obvi-
ously 3X2. Each value is divided by n giving us
X2

n
eulation of o. Before caleulating ¢, we should use the

o

and ETlX_ These are the values basic to the cal-

or mean value (coded) to calculate the value of

the mean in the original numbers
3fd
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Hence the mean — 1,050 —150 %< .333 or 1,000. The
value of the class inferval (150) may be denoted by
i (for interval). Iinkewise a definite group of num-
bers is frequently denoted by S. Properly speaking,
o is reserved for all of the bricks (or other units) pro-
duced by the process. The value S is used for the
standard deviation- ofa sample or small portion of
the whole production.
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Then: S =1i1/1.926 — (—.333)°

150 1/1.815 = 202.1
For small samples (under 30) the standard deviation
is better represented by \/% The S computed by
the use of n in the denominator can be corrected by
multiplying by \/g Graphs or tables of this are
available.

Table 9 shows the reason for picking the standard
deviation. It also shows why the range can be used
as a measure of scatteration for small samples. It is

Lot Sampl: Size, Ave;(ue. lll;lt.
5 36.0 6.6
5 31.4 0.5
5 39. 15.1
5 35.6 8.8
5 38.8 2.2
5 41.6 3.5
5 36.2 9.6
5 38.0 9.0
S 31.4 20.6
5 29.2 21.7

Fia. 10
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not that the range is so good, it is that the standard
deviation is so poor for small samples.

The Control Chart method of Quality Control is a
method of keeping track of the variations in the mean
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value and the degree of scatter from the mean. The
procedure is to take samples of relatively small size—
from 4 to 10 usually—and determine the mean and
the range on each sample. The samples should be of
the same size, and since the size is small, the range is
a good measure of scatter. Values for a group of such
samples are given in Figure 10.

In setting up the graphs upon which such values
are plotted, it is very helpful if the scatter about the
mean value has been determined previously. One ean
then enter the tables provided in the manual and
draw charts as shown-in Figare 11.

By observing the location of the points on such
charts, one ean determine whether the operation is
aimed at the right mean value and whether the devi-
ations from this value are under control. Since the
limits are 3o limits, the chances of a properly han-
dled sample being out of limits by sheer chance are
only 3 in 1,000. For this reason the out-of-limit val-
ues are an indication of lack of control.

Basic Theory of Automatic Control

C. W. BOWDEN JR., Minneapolis-Honeywell Regulator Company, Industrial Division,

Philadelphia, Pennsylvania

URING the past half century the chemical in-
dustry in the United States has been one of the
nation’s prime examples of the continuing evo-
Jution of industrial technology. New processes have
been introduced, new products have been produced,
and, perhaps even more
significant, ever greater
manufacturing efficiencies
have been attained. Some-
times when we look back
that far, statistics get a
little fuzzy. In the case of
the chemical industry the
changes and developments
since the turn of the cen-
tury have been so revolu-
tionary that statisties back
that far would be virtu-
ally meaningless., Let’s
look at just the last 15
years. This period in it-
©  self presents a revealing
| picture.
The volume of produc-
tion in the chemical indus-
- try in the year ending
Apml 1953 totaled more than $19 billion, as con-
trasted with less than $4 billion in 1939. Th)s 18
190% increase in volume. If we adjust for price
changes, ete., it means that today’s physical volume
is three times what it was 15 vears ago.

Obviously this hasn’t been aceomplished simply by
the influx of hordes of additional workers. Actually,
if we go back to our statisties, we see that employment
is less than twiee that of 1939.

The chemical industry has reached this volume by
encouraging and accepting technological advances, by
introducing new continuous methods of production,
and by the continued application of more and more

C. W. Bowden Jr.

automatic instruments to help control these opera-
tions. With the new technology today’s chemical
plant worker turns out some $26,000 worth of mate-
rial while his 1939 counterpart could produce only.
$15,000 worth. This is a pretty impressive growth
picture, is it not—to have happened in only 15 years?

The oil and fat industry can take a bow also for its
segment of the chemiecal industry has had parallel
Progress. Not to go into another statistical study,
there is one basie comparison which fully illustrates
the growth of the soaps, fats, and oils industry. In
prewar days the United States annually imported
some 1.3 billion pounds of fats and oils. Today the
industry’s progress is reflected in the fact that the
United States is a net exporter of 1.1 billion pounds.

This change has resulted from a number of factors.
There has been the increase in produetion of domestic
oil-bearing materials and the effect of wartime dislo-
cations. But one of the major factors has been the
continuing development of solvent extraction meth-
ods. Today’s techniques harness a multiplicity of in-
dustrial instruments to control these processes.

For example, at the (lidden plant in Indianapolis
the processing of soybeans is accomplished by match-
ing improvements in equipment with the application
of new control techniques. These recording and re-
cording-controlling instruments made by Honeywell
maintain eclose watch over the process variables. The
instraments thus centribute efficient operation of the
continuous extractor, eliminating the hazards and ex-
pense of solvent loss while inereasing the yield of
high-quality, reproducible end-produects.

We all realize that this rapid change-over to eon-
tinuous operation has not been confined to any par-
ticular branch of the chemiecal industry. It has been
industry-wide and is being further accelerated by
economic conditions. The large growth of markets,
the searcity of qualified operators, and the rising la-
bor costs have compelled all producers to seek maxi-



